

 Navigation

 	
 index

 	
 next |

 	zipnish latest documentation

Zipnish

Microservice monitoring tool based on Varnish-Cache [https://varnish-cache.org/]. Currently it only supports Varnish 4.
Zipnish piggybacks the VSL [https://www.varnish-cache.org/docs/4.0/reference/vsl.html] and stores a bunch of data in a similar way as Zipkin [http://zipkin.io/] does.

There is a log-reader component responsible for fetching data from VSL [https://www.varnish-cache.org/docs/4.0/reference/vsl.html] and having it stored into a MySql database,
furthermore there is an available UI that will display in a hierachical manner all requests going
through varnish to your services. Both of these components share the same MySql instance.

Prerequisites

Following packages are required for running Zipnish:

	simplemysql

	flask

	sqlalchemy

	flask_sqlalchemy

	mysql-python

Installation

Install with pip:

$ sudo pip install zipnish

Configuration

A configuration file found at /etc/zipnish/zipnish.cfg is required with a structure as described below:

[Database]
Db settings for the MySql connection.

MySql host
host = 192.168.59.103

Database name
db_name = microservice

User name
user = zipnish

Password
pass = secret

Connection keep-alive
keep_alive = true

[Cache]
Defines which cache to fetch logs from.
Name of the cache (same value sent via the -n argument)
name = demo

[Log]
Path to the daemon logfile.
log_file = /var/log/zipnish/zipnish.log

Valid log_levels are: DEBUG, INFO, WARNING, ERROR
log_level = DEBUG

For convenience purposes, there is a docker image available which handles setting up Mariadb database along with a test user.

Run Zipnish

Considering that your Varnish instance is properly configured in relation to your services, after installing Zipnish
there are two commands available:

Run the logreader:

$ zipnish-logreader

Run the ui (by default port 5000):

$ zipnish-ui

Contents:

	Zipnish UI

	VCL how to’s

	Docker

	Examples

	Give Zipnish a try

	Changes

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	zipnish latest documentation

Zipnish UI

Zipnish UI is a Flask based app meant to give an overview of the timestamps handled by the logreader.

Screenshots:

Lookup

[image: _images/service-lookup.png]
Search Results

[image: _images/services-drilldown-view.png]
Annotations

[image: _images/service-annotation-view.png]

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	zipnish latest documentation

VCL how to’s

In order for Zipnish to grab its required headers there are a few changes that are required in your VCL [http://www.varnish-cache.org/docs/4.0/reference/vcl.html]. There are two
main scenarios to be handled here:

	Caching disabled:

vcl 4.0;

backend DemoMicroservice {
 .host = "127.0.0.1";
 .port = "9999";
}

disable caching - see further down for another example with caching enabled
sub vcl_recv {
 if (req.url ~ "^/DemoService") {
 set req.backend_hint = DemoMicroservice;
 return (pass);
 }
}

	Caching enabled:

vcl 4.0;

backend DemoMicroservice {
 .host = "127.0.0.1";
 .port = "9999";
}

disable caching - see further down for another example with caching enabled
sub vcl_recv {
 if (req.url ~ "^/DemoService") {
 set req.backend_hint = DemoMicroservice;
 }
}

sub vcl_deliver {
 # add the response headers if this is a cache hit
 if (obj.hits > 0) {
 if (req.http.x-varnish-trace) {
 set resp.http.x-varnish-trace = req.http.x-varnish-trace;
 } else {
 set resp.http.x-varnish-trace = req.http.x-varnish;
 }
 set resp.http.x-varnish-parent = req.http.x-varnish;
 }
}

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	zipnish latest documentation

Docker

Unless you have a MySql instance at hand, this [https://hub.docker.com/r/mariusm/ubuntu-mariadb/] Ubuntu based image will spawn a Mariadb instance. This instance will be the one used by both the logreader and the ui. Check the IP of your docker setup and update the zipnish.cfg accordingly.

The image relies on two extra files: database.sql and init-db.sh. Both these files are available in the /docker folder within the zipnish source code. The two extra files are responsible for the creation and initialisation of an user and db tables that Zipnish will use further down the line. Browse to this folder and run the following commands:

$ docker pull mariusm/ubuntu-mariadb
$ docker run -d -p 3306:3306 mariusm/ubuntu-mariadb

A database and db user with the following credentials will be available, if you’re going to use this db instance, make sure that zipnish.cfg reflects these settings:

user = zipnish

pass = secret

db_name = microservice

To quickly check that the container is up and running, you can connect to it directly with a Mysql client.
Retrieve the IP of your docker setup and connect to the mariadb instance as follows:

$ mysql -u zipnish -h "your docker ip" --paswword=secret

On a MacOs machine you can simply run the following command:

$ mysql -u zipnish -h $(boot2docker ip) --password=secret

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	zipnish latest documentation

Examples

This section will provide a short example on how to extend an endpoint in order for Zipnish to be aware of it.

Full example code found here:
https://github.com/varnish/zipnish/blob/master/logreader/test/server.py

Zipnish requires three headers to be available per request basis:

	X-Varnish [https://www.varnish-cache.org/docs/2.1/faq/http.html] - Request id assigned by Varnish.

	X-Varnish-Trace - The id that has been assigned by Varnish to the first incoming request.

	X-Varnish-Parent - The id of the parent request which has triggered the current request.

def do_GET(self):
 x_varnish_header = self.headers['x-varnish']
 trace_header = x_varnish_header

 if 'x-varnish-trace' in self.headers:
 trace_header = self.headers['x-varnish-trace']

 headers = {'x-varnish-trace': trace_header,
 'x-varnish-parent': x_varnish_header}
...

In this specific example there is a very simple web server that handles basic GET requests based on a configuration found in server.yaml:

traces:
 - trace:
 - url: /api/articles
 - span: /api/auth
 - span: /api/titles
 - span: /api/images
 - span: /api/correct
 - span: /api/compose

The test server is exposed through port 9999, our vcl configuration has a backend the points to this server:

vcl 4.0;

backend default {
 .host = "127.0.0.1";
 .port = "9999";
}

For simplicity reason disable caching, see vcl how to's for enabled caching.
sub vcl_recv {
 return (pass);
}

Given that Varnish has its default settings, the request below:

$ curl -is http://localhost:6081/api/articles

wil have the following output:

HTTP/1.1 200 OK
Server: BaseHTTP/0.3 Python/2.7.9
Date: Tue, 10 May 2016 08:43:44 GMT
Content-type: text/html
X-Varnish: 11
Age: 0
Via: 1.1 varnish-v4
Transfer-Encoding: chunked
Connection: keep-alive
Accept-Ranges: bytes

and server output:

127.0.0.1 - - [10/May/2016 08:43:43] "GET /api/auth HTTP/1.1" 200 -
127.0.0.1 - - [10/May/2016 08:43:43] "GET /api/titles HTTP/1.1" 200 -
127.0.0.1 - - [10/May/2016 08:43:44] "GET /api/images HTTP/1.1" 200 -
127.0.0.1 - - [10/May/2016 08:43:44] "GET /api/correct HTTP/1.1" 200 -
127.0.0.1 - - [10/May/2016 08:43:44] "GET /api/compose HTTP/1.1" 200 -
127.0.0.1 - - [10/May/2016 08:43:44] "GET /api/articles HTTP/1.1" 200 -

The scenario is as follows:

	A client does a request to the test server asking for /articles

	In order to serve /articles, subsequent calls are required to other endpoints such as /auth, /titles ...etc. For demo purposes these subsequent calls are handled by the same server, what is important to notice is that all sub-requests go through Varnish as well. A random sleep time has been added for each request in order to simulate some “hard work”.

	The application server decorates the subsequent requests with the required headers, as shown in the code above.

	Zipnish-logreader picks up its required data from VSL as these requests go through.

	While data gets written in the MySql database, Zipnish-UI will be able to represent how requests have been issued and how much time each of them has taken.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	zipnish latest documentation

Give Zipnish a try

This section aggregates all other chapters in the documentation and will provide a guide
for setting up a working environment with Zipnish.
As a side-note, all steps below have been run on a Centos7 machine.

A fresh Centos7 VM requires the following packages:

$ sudo yum -y install mariadb-devel
$ sudo yum -y install python-devel
$ sudo yum -y install python-pip

	Start an application server

Clone the git repo:

$ git clone https://github.com/varnish/zipnish.git

Start the application server:

$ cd zipnish/logreader/test
$ python server.py &

This will spawn a lite web server listening on port 9999, the endpoints available in this server
are as defined in the server.yaml file located in the same folder.

	Install, configure and start Varnish

Zipnish requires Varnish [http://www.varnish-cache.org/] 4, earlier versions are not supported.

$ sudo yum install -y varnish

Update /etc/varnish/default.vcl file with the following content:

vcl 4.0;

Default backend definition. Set this to point to your content server.
backend default {
 .host = "127.0.0.1";
 .port = "9999";
}

sub vcl_recv {
 return(pass);
}

Start Varnish:

$ sudo service varnish start

Or reload, if Varnish has already been installed:

$ sudo service varnish reload

Unless otherwise specified, Varnish will listen on port 6081.
For simplicity reasons vcl_recv() will pass all requests, refer to the VCL [http://zipnish.readthedocs.io/en/latest/vcl.html] section in order to have caching enabled. Notice that the default backend points to the server that has just been spawned previously.

	Check that Varnish and the backend are set correctly

Issue the following request against Varnish:

$ curl -is http://localhost:6081/api/articles

Expected output:

127.0.0.1 - - [10/May/2016 11:26:54] "GET /api/auth HTTP/1.1" 200 -
127.0.0.1 - - [10/May/2016 11:26:54] "GET /api/titles HTTP/1.1" 200 -
127.0.0.1 - - [10/May/2016 11:26:54] "GET /api/images HTTP/1.1" 200 -
127.0.0.1 - - [10/May/2016 11:26:55] "GET /api/correct HTTP/1.1" 200 -
127.0.0.1 - - [10/May/2016 11:26:55] "GET /api/compose HTTP/1.1" 200 -
127.0.0.1 - - [10/May/2016 11:26:55] "GET /api/articles HTTP/1.1" 200 -

HTTP/1.1 200 OK
Server: BaseHTTP/0.3 Python/2.7.9
Date: Tue, 10 May 2016 11:26:55 GMT
Content-type: text/html
X-Varnish: 32803
Age: 0
Via: 1.1 varnish-v4
Transfer-Encoding: chunked
Connection: keep-alive
Accept-Ranges: bytes

	Configure a MariaDb instance

Install docker:

$ sudo yum -y install docker

Pull and run the following container [https://hub.docker.com/r/mariusm/ubuntu-mariadb/] for setting up a MariaDb instance:

$ docker pull mariusm/ubuntu-mariadb
$ docker run -d -p 3306:3306 mariusm/ubuntu-mariadb

Once created, the container will host a mariadb instance with a microservice database and a user with the following credentials:

user = zipnish

pass = secret

	Install and configure Zipnish

Zipnish is available in Pypi, thus run the following command to install it:

$ sudo pip install zipnish

Create a /etc/zipnish/zipnish.cfg with a content similar as described in configuration [http://zipnish.readthedocs.io/en/latest/index.html]. Retrieve the docker container IP and update the mysql host accordingly in the .cfg file.

Create the log folder:

$ sudo mkdir -p /var/log/zipnish
$ sudo chown -R $(whoami): /var/log/zipnish

	Run

Start the log-reader:

$ zipnish-logreader &

Start the zipnish UI:

$ zipnish-ui &

Issue a test request to generate tracking data:

$ curl -is http://localhost:6081/api/articles

	Browse the UI

Open a browser and navigate to http://127.0.0.1:5000

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	zipnish latest documentation

Changes

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	zipnish latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 code/RPC Services.html

 Navigation

 		
 index

 		zipnish latest documentation »

 All RPC services should be access by a proxy Varnish.

Broad Overview

		Client makes a request to Varnish.

		Varnish sends request to a RPC service.

		Varnish gets a response and forwards it to the client.

Installing Node.js

Installing instructions for node.js can be found on
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager

In short, running below on debian as root will setup Node.js

apt-get install -y nodejs
curl -sL https://deb.nodesource.com/setup_0.12 | sudo bash -

Configuring Services

Changing directory to rpc-service and running npm install should setup everything.

Try the following commands on your command line / bash.

> cd rpc-service
> npm install

npm install will install the modules required to run the service.

Creating Services

A generic web-service code is available inside rpc-service on root.

Initiate a parent service using Node.js command,

node app.js --port 9000 --address 127.0.0.1 --service 'Parent'

Command line parameters

Name	Value	Status	Example	
————-	————-	—–	—–	—-
port	integer > 0	required	–port 9000	
address	ip-address / domain name to a web-service	required	–address 127.0.0.1	
service	A string to specify service name to run.	required	–service ‘Fetch News’	
services	A string services to run. ``[service-url]:[Service Name][=>[serial or parallel]:[one or more service url’s separated by comma ,]]	required	–service ‘Fetch News’	

Additionally the Dummy API [https://github.com/espebra/dummy-api] can also be used. It uses a little different headers subtracting out Varnish- from headers.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

code/Headers.html

 Navigation

 		
 index

 		zipnish latest documentation »

 | Tracking

Headers | Description |
|—|—|
| X-Varnish | This header is automatically picked up from the Varnish Shared Memory log. |
| X-Varnish-Parent | Parent of a request. Each RPC call must have a X-Varnish-Parent.
It is a copy of X-Varnish header at the parent RPC call level. |
| X-Varnish-Trace | It is used to connect a Request / RPC call to a trace. Each RPC call except the root RPC call will have a X-Varnish-Trace header. |
| X-Varnish-Debug | 0 or 1. For now value doesn’t signify anything special. It needs to comply with ZipKin, but we’ll probably look int this later. |

Request

When a RPC call makes a call to another RPC call down the chain. These headers are passed along X-Varnish-Trace and X-Varnish-Parent.

Response

When a RPC call responds. It needs to respond back with X-Varnish-Trace and X-Varnish-Parent headers, which it received from it’s parent call.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

code/Reader.html

 Navigation

 		
 index

 		zipnish latest documentation »

 Reader is responsible for reading Varnish Shared Memory Log.

It reads the following fields.

Name	Description	
—	—	—
VxID	Unique Varnish Request ID. It is not unique between varnish restarts.	
Request Type	Request can be (client / backend)	
Tag	e.g. Begin, End, Link, Timestamp, ReqHeader, RespHeader, BereqHeader, BerespHeader	
Data	Contains information related to Tag above.	

After reading above fields, Reader passes above fields to [Data Manager](Data Manager.md)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-close.png

code/Varnish Logger.html

 Navigation

 		
 index

 		zipnish latest documentation »

Varnish Log Script

For now the script merely checks and prints varnish log headers (key: value pairs).

Running the varnish logger script.

>

 cd log-reader

>

 python app.py

Essentially the following varnishlog should give us required information needed for ZipKin log.

varnishlog -i ReqURL,BereqURL,ReqHeader,BereqHeader,RespHeader,BerespHeader,Timestamp

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/service-annotation-view.png
sociis.diam: 45ms

Servi

Relative Time

Annotation
Glient Send
Server Recleve
gravida
semper
Server Sent

Client Recieve

Host

245.167.17.198:6830

245.167.197.198:6830

245.167.197.198:6830

245.167.197.198:6830

245.167.197.198:6830

245.167.197.198:6830

code/Example Service.html

 Navigation

 		
 index

 		zipnish latest documentation »

 To see how the flow of request take place. Please refer to the bash script

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/service-lookup.png
e Varnish Micro Service Monitor

all

- 18 spans

i about 5 hours ago

28, accumsanx 1
1y UMX2 47, turpis X 1

= 43 spans

i 24 days ago

By scoumsanx |

By s x 1

- 3spans.

i 24 days ago

8 consectoturx 1

10, 2uctorx 1

18, adpiscingx 1
T loctux 1 23, magnax 1
62, ntumx 1

T faclss X 1

©65.000 ms.

M consectetur 4%

©107.000 ms
W consectetur 33%

©22.000ms

W consectetur 45%

2 consectaturx 1
17, urices x 1

16 auctorx 1
57y magris x 1
27y somperx 1

22, ratoque x 1

12 curabit x 1

96, conguex3 35, consecteturx 1
1y maloSiaca X2 35, MallEX 1 22y MAKSX2 47y monieSX 1

18,5 5008X2 20y, toduntx 1

Q Find a Trace

e | osaoams | 10 | i | 0 o

26, lguUaX 1 7, MA0CONESX2 65, MagNSX 1 29, MONESX 1 11,y puinarx 1

22,, consoquatx 1 23, donecx 1 B felsx1 17, feugatx1 23, fpsumx1 31, lchax2
T B0 X 1 13, NIOGUOX T 107, PAruiont x 1 17, pelentesauox 1 12, portax2
24, ulrcesx2 13, vehiouax 1 7p, Vigex2

code/ZipKin and Varnishlog headers.html

 Navigation

 		
 index

 		zipnish latest documentation »

 By default varnishlog is grouped by Vxid.

X-Varnish same as RequestID. Therefore Vxid is unique and can be used as an identifier for trace_id or span_id.

ZipKin Field	varnishlog Header
—	—
span_id	Vxid (varnish request id)
ipv4	Host field in (Bereq and Request)
port	Host field in (Bereq and Request)

Timestamps

Request

ZipKin Annotation	varnishlog Header
—	—
cs - client start	Start (client start)
cr - client recieve	Resp (client recieve)

Backend Request

ZipKin Annotation	varnishlog Header
—	—
sr - server recieve	Bereq (backend request)
ss - server send	Beresp (backend response)

Can’t find parent_id or any kind of reference (X-Forwarded / X-Reference) to connect one request with an parent request.

Therefore we keep parent_id = NULL for now.

We will reuse Vxid inside trace_id as well. Which will make trace_id same as span_id. Trace and Span identifiers can be the same as per ZipKin documentation [http://twitter.github.io/zipkin/Instrumenting.html].

Trace Id

The overall ID of the trace. Every span in a trace will share this ID.

Span Id

The ID for a particular span. This may or may not be the same as the trace id.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/comment.png

_static/comment-bright.png

code/Varnish API.html

 Navigation

 		
 index

 		zipnish latest documentation »

 ####Current support####

Currently we only support Varnish 4.0.

We use c-types Python Binding from the following link
https://github.com/xcir/python-varnishapi

LICENSE for above library probably needs to be included somewhere if we choose to distribute: https://github.com/xcir/python-varnishapi/blob/master/LICENSE

 © Copyright 2016.
 Created using Sphinx 1.3.5.

code/Data Manager.html

 Navigation

 		
 index

 		zipnish latest documentation »

 Data manager comes into play after data has been Read from the shared memory log by Reader

Data manager recieves the following set of fields as argument to it’s addLogItem function.

VxId, Request Type, Tag, Data

Log data for client / backend request is read inside addLogItem() function.

addLogItem() is a dictionary (key: value structure). Values are read in based upon tag value.

Upon encountering tag == 'End' logItem is send to Log Storage to be recorded.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/file.png

_images/services-drilldown-view.png
Expand Al | Collapse All Duration:

107000ms Spans: 43 Services: 34 Depth: 6

Services 0000 ms. 21.400ms. 42,800 ms. 64.200ms 85.600ms 107.000 ms.
parturient 10705 : pOta

45ms : diamO

_static/plus.png

_static/down.png

_static/up.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		zipnish latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

code/Storage.html

 Navigation

 		
 index

 		zipnish latest documentation »

 Log Storage processes log items as they are recieved.

It stores log items by processing and categorizing them internally using (Span and Annotation) arrays.

Span and Annotation arrays work like a buffer. We can specify the minimal number of items that must be present inside a Span / Annotation array before it’s flushed to Storage.

Current limitations are,

Label	Amount
—	—
Minimum number of spans before flushing	2
Minimum number of annotations before flushing	4

 © Copyright 2016.
 Created using Sphinx 1.3.5.

code/ZipKin.html

 Navigation

 		
 index

 		zipnish latest documentation »

ZipKin

Running zipkin.

		git clone git@github.com:twitter/zipkin.git

		cd zipkin

		run zipkin example using > ./bin/sbt “zipkin-example/run -zipkin.storage.anormdb.install=true -zipkin.storage.anormdb.db=sqlite://Users/[USERNAME]/Desktop/zipkin/logger.db -genSampleTraces=true”

		if you remove -zipkin.storage.anormdb.db option, zipkin uses mysql in-memory store.
		if zipkin persistent store is used as in 3. above. Database for it will be found on /Users/[USERNAME]/Desktop/zipkin/logger.db

		if you remove -genSampleTraces=true option, zipkin does not generate sample data.

		for mysql - ./bin/sbt “zipkin-example/run -zipkin.storage.anormdb.install=true -zipkin.storage.anormdb.db=mysql://127.0.0.1:3306/zipkin?user=zipkin&password=kinect -genSampleTraces=true”

		for using mysql change line #273 anormDriverDependencies(“sqlite”) to anormDriverDependencies(“mysql”), this will download mysql-java-connector

		Once zipkin is installed and running, you can view the UI on: http://localhost:8080

		It is loaded with example data, and sqlite in memory database store.

UI

Zipkin UI will be utilized for tracing request paths. UI can be accessed on: http://localhost:8080

Request Tracking

		Trace

Represents a request path, contains one or more spans.

		Span represents an RPC. It has,

		spanId representing itself.

		parentId representing parent spanId. Absense means it’s the rootSpan. A point from where trace starts.

		traceId linking it to the trace.

		one or more annotations

		Annotation

		Marks an occurance in time.

		cs = time when client made the request.

		sr = time when server recieved the request.

		ss = time when server sent the response.

		cr = time when client recieved the response.

cs -> sr -> ss -> cr

		cr marks the end of an RPC call.

		Binary Annotations are time independent and provides extra information about an RPC.

Each of the id’s are randomly generated and are 64-bits long. traceId is only generated once and can be the same as the initial spanId.

On the same RPC spanId is re-used during cs / sr / ss / cr (see above).

Making RPC call downstream will require a newly generated spanId. Each downstream call made will have a spanId from the RPC caller, it’s called parentId

Each downstream RPC call will inherit spanId RPC call initiater.

Additional headers e.g. Sampled value either 0 or 1 is passed. Sampled allows RPC call to determine if it should record trace information (1) or not (0). Pre-assuming the flag values, 1 and 0 as yes and no.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

code/False data.html

 Navigation

 		
 index

 		zipnish latest documentation »

 False data document although irrelevant as of now.

But it remains here for understandability reason, for example, if one
might want to extract certain code snippets e.g. generating timestamps
etc.

DB Schema
Spans

span_id
parent_id
trace_id
span_name
debug
duration
created_ts

Annotations

span_id
trace_id
span_name
service_name
value
ipv4
port
a_timestamp
duration

All timestamps are in micro-seconds. Durations (difference between timestamps) are also in micro-seconds.

Python function to generate timestamp / microsecond

import time
int (time.time() * 1000000)

Process

		Start from span table.

		Generate 19 digit unique number.

		Insert that unique number into -> span_id
		if parent_id is available from headers insert it, otherwise leave it NULL

		if trace_id is available from headers insert it, otherwise generate a new trace_id to be used.
		for now just reuse span_id number if trace_id is not available and pass it along the chain of RPC calls.

		created_ts will be 16-digit timestamp generated with above python script.

		duration will remain NULL for now.
		It needs to be calculated when value = cr for trace_id = span_id

		Use span_id, trace_id generated in 1. to populate annotations table.

		service_name (use example_service as a name just for example sake)

		value (restrict yourself to these four values cs / sr / ss / cr, other value how they can be used need to be understood as used in example, but it comes later.)

		cs = client send, sr = server recieve, ss = server send, cr = client recieve

Rough

		create functions to: generate microsecond timestamp, generate random id

		get a handle to database connection

		create function add_span

		create function add_span_annotation

Notes

For now randomness is generated using random.getrandombits(64). Skipping the idea of using microseconds() as id for trace_id, span_id etc.

In future if need following hash can be used, credits :point_down:

sha256(varnish host IP, XID, timestamp) :clap: @espebra :clap:

All root spans which start a trace.
SELECT * FROM zipnish_spans WHERE span_id IN (SELECT span_id FROM `zipnish_spans` WHERE `parent_id` IS NULL ORDER BY `parent_id` ASC)

Additional Packages

Install Python MySQL using the following command below,

sudo apt-get install -y python-mysqldb
sudo apt-get install -y libmysqlclient-dev
pip install mysql

Assumptions

		Spans contains RPC calls. Each new span without a parent starts a trace.
		Span which starts a trace occurs only once inside zipnish_spans. It’s first entry is marked by sr server recieve event.

		Each RPC call has events such as,
		cs - client send is marked by a first entry inside zipnish_spans

		sr - server recieve is marked by a second entry inside zipnish_spans

 © Copyright 2016.
 Created using Sphinx 1.3.5.

code/Configuring JDK.html

 Navigation

 		
 index

 		zipnish latest documentation »

Installing or configuring jdk.

		Download the jdk from: http://www.oracle.com/technetwork/java/javase/downloads/index.html

		Create a folder “java” inside user home (e.g. /home/[username])

		mv jdk from ~/Downloads to ~/java

		extract jdk using tar zxvf jdk-archive-name.tar.gz

		Use command > update-alternatives –install /usr/bin/java java /home/[username]/java/jdk1.8.0_45/bin/java 1000 Note: name or path to jdk can vary depending on downloaded version.

		choose default java version using > update-alternatives –config java

		Similarly configure javac, > update-alternatives –install /usr/bin/javac javac /home/[username]/java/jdk1.8.0_45/bin/javac 1000

		If needed configure default javac using, update-alternatives –config javac

 © Copyright 2016.
 Created using Sphinx 1.3.5.

